Sodium Hyaluronate – 3000 kDa

Product Number: H-3000


Sodium Hyaluronate is the sodium salt of hyaluronic acid (HA), also known as hyaluronan, a glycosaminoglycan consisting of D-glucuronic acid and N-acetyl-D-glucosamine disaccharide units. HA is one of several glycosaminoglycan components of the extracellular matrix of connective tissue. HA is a naturally occurring biopolymer involved in numerous biological processes including tissue hydration and structural scaffolding. HA is increasingly used as a reagent and investigated in medical, pharmaceutical and bioengineering applications. Its use as a reagent includes hydrogels for use in aesthetics, ophthalmology, rheumatology, urology, wound healing, and 3D bioprinting.

Our medical grade Sodium Hyaluronate is produced by HTL by fermentation of a Streptococcus equi strain (Group C of the Lancefield Classification / Non GMO / Without any material from animal origin). HTL’s proprietary process allows the production of Sodium Hyaluronate fiber with an exceptionally low level of impurities. HTL Sodium Hyaluronate raw material is a medical grade pharmaceutical product manufactured under cGMP conditions and is covered by a Certificate of Suitability of Monographs if the European Pharmacopoeia (CEP) and Drug Master File (DMF).
HTL Sodium Hyaluronate is aliquoted and distributed by Echelon for research use only.

MW range: 2,700-3,300 kDa (see Certificate of Analysis for lot specific MW)

Storage: dry product at 5 °C, protected from light and humidity. Solutions should be stored frozen at -20 °C or below.

About HTL: HTL is the world leader in the production of pharmaceutical grade Sodium Hyaluronate by fermentation.

Bulk discounts available, please email for information.


1) M.A. Serban, A. Skardal (2018) “Hyaluronan chemistries for three-dimensional matrix applications” Matrix Biology, 78-79, 337-3454. doi: 10.1016/j.matbio.2018.02.010.
2) C.B. Highley, G.D. Prestwich GD, Burdick JA. (2016) “Recent advances in hyaluronic acid hydrogels for biomedical applications.” Curr Opin Biotechnol. 40, 35-40. doi: 10.1016/j.copbio.2016.02.008.
3) J.A. Burdick, G.D. Prestwich (2011) “Hyaluronic acid hydrogels for biomedical applications.” Adv Mater. 23, H41-56. doi: 10.1002/adma.201003963.
4) A. Dodero, R. Williams, et al. (2019) “A micro-rheological and rheological study of biopolymers solutions: Hyaluronic acid” Carbohydrate Polymers, 203, 349-355, doi:10.1016/j.carbpol.2018.09.072.
5) P.A. Simmons, J.G. Vehige (2017) “Investigating the potential benefits of a new artificial tear formulation combining two polymers.” Clin Ophthalmol. 11, 1637-1642. doi:10.2147/OPTH.S135550.


Biochemical Reagents


Hyaluronic Acid, Sodium Hyaluronate

CAS Number



4-8 °C

Shipping Temp

Ambient Temperature

Technical Data Sheet

Certificate of Analysis – Lot# PHI4001B

Certificate of Analysis – Lot# PHI4031

You may also like…

Shopping Cart
Scroll to Top

Technical Support

Bulk & Custom Orders