right-icon

Back to blog

Research Highlights Echelon Biosciences - A phosphatidylinositol kinase could be a new target for autoimmune therapy

A phosphatidylinositol kinase could be a new target for autoimmune therapy

Interleukin-17 (IL-17) is a cytokine produced by a specific type of T cell and is involved in restricting invasive microbes. Despi...

3 minute read
By Cameron Day
November 3

Interleukin-17 (IL-17) is a cytokine produced by a specific type of T cell and is involved in restricting invasive microbes. Despite this positive inflammatory action, it can also cause tissue damage in autoimmune conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA). In this light, T cell activity and IL-17 must be strictly controlled, but very little is known about these processes beyond the transcriptional level. An alternative to looking at expression patterns within these cells is examining the signaling pathways that are required for production of IL-17.

T cells have specialized T cell receptors (TCRs) that can be found in the plasma membrane. These receptors are responsible for recognizing antigen peptide fragments and are known to signal to the nucleus through some well characterized transduction pathways. However, the precise pathway for IL-17 production has not been fully described. Here, Revu and colleagues show that nuclear localization of the second messenger lipid phosphatidylinositol 4,5-bisphosphate (PIP2) is enhanced in TH17 T cells. This was dependent on the activity of a specific kinase, PIP5K1α, and was necessary for production of IL-17. Conversely, cytokine production in other types of T cells was not dependent on PIP5K1α activity or nuclear PIP2. In these studies, cells were stained with antibodies against the cell surface markers CD4 and CD154. Echelon's Biotinylated Anti-PtdIns(4,5)P2 IgM (Cat. #Z-B045)was used for nuclear staining.

Echelon Biosciences - TCR activation leads to post-transcriptional regulation of IL-17 via PIP5K1a

Figure 1: Activation of TCRs leads to PIP5K1α activation. This initiates production of the cytokine, IL-17, whose protein synthesis is regulated by formation of a mRNA binding complex including PIP5K1α. Likewise, inhibition of PIP5K1α blunts IL-17 production.

In MS, inflammatory T cells are autoreactive to the endogenous protein myelin basic protein (MBP) and this reactivity is partly characterized by high levels of IL-17. In the current study, T cells obtained from MS patients were activated by MBP, but downstream production of IL-17 could be blocked by inhibiting PIP5K1α. The data suggest that this occurs post-transcriptionally as PIP5K1α forms an apparent mRNA cap-binding complex to facilitate IL-17 mRNA translation. However, it remains unclear if PIP5K1α activity is required for IL-17 mRNA translation or if blockade of IL-17 production via PIP5K1α inhibitor binding is due to an allosteric action that prevents mRNA cap binding. In total, the current data highlights a new pathway for regulation of cytokine production which may hold relevance for development of therapies for autoimmune disorders.

Read the full article here:

Human IL-17A protein production is controlled through a PIP5K1α-dependent translational checkpoint

Science Signaling 16:808 (2023)

0.2

/ 0.3

Related Articles

Stay informed with our informative blog posts.

Research Highlights
SYD-1 recruitment of neurexin for synatpogenesis - Echelon Biosciences

Lipid mediated intracellular organization of synaptic assembly

Proper nervous system function relies on small junctions between neurons that allow for communication. These are called synapses.

2 minute read
By Cameron Day
February 18

Research Highlights
Addition of anti-inflammatory lipids may alleviate immune activation from pDNA-LNPs - Echelon Biosciences

Addition of anti-inflammatory lipids blocks toxicity from pDNA-LNPs

Interest in ionizable lipids and lipid nanoparticles (LNPs) continues to accelerate, and as the field grows novel cargos and lipid

3 minute read
By Cameron Day
January 17

0.3

/ 0.3

Get in Touch

If you have any questions or would like to learn more about our services, feel free to reach out to us. We’re here to help!

Contact Echelon
Biosciences
Basket

Your Echelon Basket is empty.