

Lysosomal Phospholipase A2 (LPLA2) Inhibitor Screen

K-7000I (384 tests)

Support: echelon@echelon-inc.com

<u>Description:</u> Description: LPLA2 Inhibitor Screen (K-7000I) is a homogeneous assay designed to screen molecules that potentially trigger phospholipidosis (PL) through inhibition of LPLA2.

<u>Storage</u>: Upon receipt, store assay kit at -20 °C. Opened and reconstituted reagents are less stable. Please see assay notes for additional information.

Materials Provided

Catalog #	Description	Quantity
K-7001I	Human LPLA2 (Lyophilized)	1 vial
K-7002I	LPLA2 Substrate (Dried)	1 vial
K-7003I	4X Reaction Buffer	1 bottle
K-7004I	Control Inhibitor – Amiodarone (1 µmol)	1 vial
K-7005I	5X Stop Solution	1 bottle
K-GS01	Protein Stabilizer	2 x 600 mL
K-DIL7	Diluent	1 bottle
	384-well Low Volume Black Plate	1 plate
	Plate Sealers	2 seals

Quick Protocol

Reconstitute LPLA2 Substrate.
Prepare Control Inhibitor/ Sample Serial Dilution.
Pre-Incubate Control Inhibitor / Sample with LPLA2 Substrate for 1 hour.
Prepare Control Master Mix & Reaction Master Mix
Add Master Mix & incubate for 1 hour.
•
Add Stop Solution.
Read fluorescence at Ex 490 nm & 540 nm Em.

Additional Materials Provided by User

- Pipettes (capable of delivering between 5 and 1,000 µL solution with appropriate tips)
- Reagent grade water
- Dimethyl sulfoxide (DMSO)
- (optional) plate shaker
- Microplate reader capable of reading with 490 nm excitation & 540 nm emission (see assay note #1).

Echelon Biosciences products are sold for research and development purposes only and are not for diagnostic use or to be incorporated into products for resale without written permission from Echelon Biosciences. Materials in this publication, as well as applications and methods and use, may be covered by one or more U.S. or foreign patents or patents pending. We welcome inquiries about licensing the use of our trademarks and technologies at echelon@echelon-inc.com

TM

Technical Data Sheet, Rev 9b, 08-06-25 – For research use only. Not intended for diagnostic or therapeutic use. Page 1

Background

The human lysosomal phospholipase A2 (LPLA2) enzyme is responsible for normal lipid metabolism. It is unique from other known PLA2s in that LPLA2 is only active in an acidic environment such as the lysosome (~pH 4.5). Furthermore, it demonstrates negligible activity at pH 7.4 which is normally found for the cytosol. In addition, LPLA2 acts as a transacylase with C2-ceramide as a preferred lipophilic acceptor.1 Research has shown LPLA2 to be involved in drug-induced phospholipidosis (DIPL).2 Phospholipidosis (PL) is a condition resulting from the excessive accumulation of intracellular phospholipids, causing tissue inflammation and organ damage. PL commonly manifests in patients taking cationic amphiphilic drugs (CADs) such as fluoxetine (Prozac™, Sarafem) and Amiodarone. The FDA has determined DIPL a serious drug safety issue.3 Although the complete cause of DIPL is unknown, evidence is accumulating that DIPL is the result of 3. certain CADs directly inhibiting the actions of the lysosomal phospho-lipase A2 (LPLA2). Thus, LPLA2 inhibition is a potential predictor of drug-induced phospholipidosis.

Assay Design

Echelon's LPLA2 Inhibitor Screen (K-7000I) is designed to screen a drug's ability to inhibit LPLA2 activity in vitro, a potential predictor of drug-induced phospholipidosis, in a high throughput format (HTS) using "smart probe" technology. A quenched fluorogenic substrate is liberated by LPLA2 activity, resulting in a bright fluorescent product (Figure 1). Therefore, the fluorescent signal is significantly reduced in the presence of an LPLA2 inhibitor. This direct biochemical approach provides a quantitative measurement in a robust and simple to use in vitro plate-based assay, providing a greatly improved throughput when compared to traditional microscopy methods of tissue cultured cells. The assay has been validated with a group of known PL-inducing and non-PL inducing drugs. A known PL-inducing cationic amphiphilic drug (CAD), amiodarone, is included in the assay as a control.

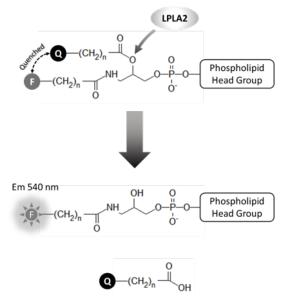
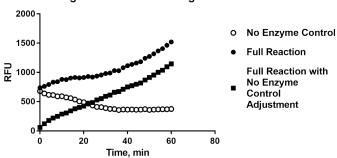


Figure 1. Assay Design Q = Quencher, F = Fluorophore


Assay Performance

For best results, please follow the protocols provided. Not following instructions may result in suboptimal performance of the kit and failure to produce accurate data.

Assay Notes

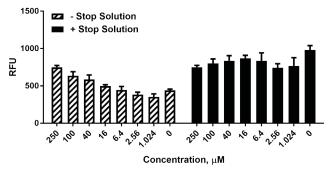
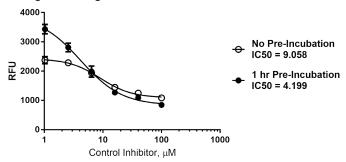

- The LPLA2 Inhibitor Screen is designed to be run as a one-time use only assay. If the inhibitor screen is to be run on separate occasions, the remaining kit reagents can be stored at -20 °C. However, a reduction in the strength of the fluorescent signal has been observed after freezethaw. Always include the Control Inhibitor as a standard to ensure accurate results. DO NOT COMBINE different vials of reconstituted LPLA2 Substrate (K-7002I).
- If an alternative solvent to DMSO is used in preparing the test compounds, include a "solvent only" control without the test compound to detect potential solvent effects. To ensure assay reproducibility, it is advised to use consistent solvent concentrations between experiments.
- 3. The LPLA2 Inhibitor Screen can also be read in kinetic mode, reading every 5 minutes for 1 hour, using the same excitation/emission settings as step 17. However, photobleaching might occur as demonstrated by the "No Enzyme Control" (Figure 2). Including this "No Enzyme Control" allows one to account for photobleaching and is recommended for data analysis.

Figure 2. Photobleaching

4. Fluorescent interference, including self-quenching and inhibitor related auto-fluorescence, may result in false positives or false negatives when screening. If fluorescent interference is a concern, screening the inhibitor without the LPLA2 enzyme will serve as control. We have observed that the addition of Stop Solution (K-7005l) significantly improves this self-quenching or auto-fluorescence effect when screening drugs (Figure 3).

Figure 3. Clomipramine Background (No Enzyme Controls)

Technical Data Sheet, Rev 9b, 08-06-25 - For research use only. Not intended for diagnostic or therapeutic use. Page 2



Ph: 866-588-0455 Fax: 801-588-0497 **echelon-inc.com**

 For optimal results, we suggest using a consistent preincubation time (step 8). Varying the pre-incubation time significantly affects the IC50 of the Control Inhibitor (K-7004I, Figure 4).

Figure 4. Drug-Substrate Pre-Incubation

Assay Protocol

Reagent volumes can be adjusted when not using the entire assay, please see assay note #1 for more details.

- 1. Place LPLA2 Enzyme (K-7001l) on ice. Bring the remaining reagents to room temperature (RT).
- Reconstitute the Control Inhibitor (K-7004l) with 20 µL of DMSO for a 50 mM Stock. Vortex to mix. Keep at RT.
- Add 2 mL of reagent grade water to the LPLA2 Substrate (K-7002I). VORTEX VIGOROUSLY FOR 5 MINUTES to form liposomes. Keep at RT.
- 4. Prepare the 7-point Control Inhibitor serial dilutions in microcentrifuge tubes. See Table 1. Keep at RT and protect from light.

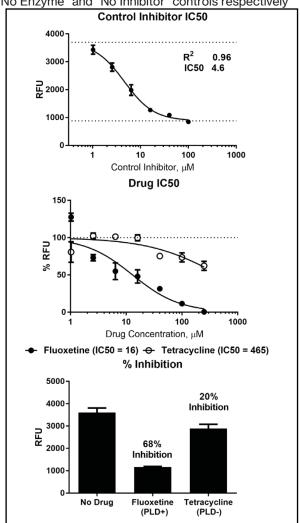
Table 1, Control Inhibitor Dilutions

Standard	1X Control Inhibitor	16X Control Inhibitor	Previous Dilution Needs	DMSO to add
А	100 μΜ	1600 µM	5 μL of K-7004l	151 μL
В	40 μM	640 µM	30 μL of 1600 μM	45 μL
С	16 µM	256 μM	30 μL of 640 μM	45 μL
D	6.4 µM	102.4 μM	30 μL of 256 μM	45 μL
Е	2.56 µM	40.96 μM	30 μL of 102.4 μM	45 μL
F	1.024 µM	16.384 µM	30 μL of 40.96 μM	45 μL
G	Ο μΜ	О μΜ	None	45 μL

5. Prepare the compounds to be tested in DMSO at 16X the desired final concentration. See assay note #2 if you use a solvent other than DMSO.

- 6. Add 1 μL/well of the 16X Control Inhibitor serial dilutions (step 4.) and 1 μL/well of the 16X compounds to be tested. For the "No LPLA2" control, add 1 μL/well of DMSO or the solvent of your choice. It is suggested that samples be run in triplicate. A suggested plate layout is shown below (Table 2). See assay note #4 for information on drug auto-fluorescence.
- Add 4 µL of the LPLA2 Substrate (K-7002I), prepared in step 3, to all wells.
- Cover the plate with a plate seal and pre-incubate the control inhibitors or test compounds with the LPLA2 substrate for 1 hour at RT with shaking and protected from light. See assay note #5 for more information on pre-incubation.
- Reconstitute the Human LPLA2 (K-7001I) with reagent grade water with the volume labeled on the vial. GENTLY PIPETTE UP & DOWN AND INCUBATE ON ICE FOR 10 MINUTES to ensure full reconstitution. Keep on ice.
- Control Master Mix: Prepare 137.5 μL of "Control Master Mix" solution by combining the following in a Microcentrifuge tube:
 - a. 50 µL 4X Reaction Buffer (K-7003I)
 - b. 50 µL Diluent (K-DIL7)
 - c. 37.5 µL Reagent Grade Water
 - d. Vortex to mix. Keep at RT.
- 11. Prepare 1,700 µL of the human LPLA2 by further diluting the reconstituted human LPLA2 (step 9) with Diluent (K-DIL7) according to the dilution factor labeled on the vial. Vortex for 3 seconds to mix. Keep at RT.
- Reaction Master Mix: Prepare 4,675 μL of "Reaction Master Mix" by combining the following in an appropriate container.
 - a. 1,700 µL 4X Reaction Buffer (K-7003I)
 - b. 1,700 μL LPLA2 Enzyme diluted in Diluent (step 11.)
 - c. 1,275 µL Reagent Grade Water
 - d. Vortex to mix. Keep at RT.
- 13. Following the 1-hour LPLA2 Substrate / Inhibitor preincubation step, add 11 μL of the Control Master Mix into the "No LPLA2" control wells. Add 11 μL of the Reaction Master Mix into the remaining wells to start the reactions.
- 14. Cover the plate with a plate seal and incubate at RT for 1 hour with shaking. Protect from light. If the plate shaker is not available, gently tap plate to mix before incubation. See assay note #3 for additional information regarding kinetic analysis.
- 15. After 1 hour, add 4 μ L of the 5X Stop Buffer (K-7005I) to each well to stop the reactions. Incubate at RT in the dark for 15 minutes. Stop Solution must be added prior to fluorescence recording for end-point assay. See assay note #4 for additional information.
- Record the fluorescence using 490 nm excitation and 540 nm emission settings. See assay note #3 for additional information. additional information regarding kinetic analysis.

Technical Data Sheet, Rev 9b, 08-06-25 - For research use only. Not intended for diagnostic or therapeutic use. Page 3



Ph: 866-588-0455 Fax: 801-588-0497 **echelon-inc.com**

Data Analysis

Examples of the Control Inhibitor's IC50 curve (Top), an end-point inhibitor screen (Middle), and the analysis of the drugs, fluoxetine and tetracycline, and their respective IC50 curves (Bottom). IC50 is analyzed using the log(agonist) vs. response – variable slope curve fit from GraphPad Software with top & bottom constrained by "No Enzyme" and "No Inhibitor" controls respectively

References

- Abe, A.; Gregory, S.; Lee, L.; Shayman, J. A., Use of sulfobutyl ether beta-cyclodextrin as a vehicle for Dthreo-1-phe- nyl-2-decanoylamino-3-morpholinopropanolrelat ed glucosylceramide synthase inhibitors. Anal Biochem 2000, 287 (2), 344-7.
- 2. Halliwell, W. H., Cationic amphiphilic drug-induced phospholipidosis. Toxicol Pathol 1997, 25 (1), 53-60.
- 3. Shayman, J. A.; Kelly, R.; Kollmeyer, J.; He, Y.; Abe, A., Group XV phospholipase A(2), a lysosomal phospholipase A(2). Prog Lipid Res 2011, 50 (1), 1-13.

Related Products

Products	Catalog Number
Enzyme	
Human LPLA2	E-7000
Assay	
LPLA2 Activity Assay	K-7000A

Please visit our website at www.echelon-inc.com for more enzyme and lipid products.

Table 2, Suggested Plate Layout

		Table 2, Suggested Plate Layout																							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	2	2 2	3	24
Α	No	LPLA	LPLA2 Compour		nd 9	Compound 25		nd 25	Compound 41			Compound 57		Compound 73		Compound 89		Compound 105		105					
В	Sta	ndar	d A	Compound 10			Compound 26			Compound 42			Compound 58			Compound 74			Compound 90			Compound 106			
С	Sta	ndar	d B	Com	npou	nd 11	Compound 27			Compound 43			Compound 59			Compound 75			Compound 91			Compound 107			
D	Sta	ndar	d C	Compound 12		Compound 28		Compound 44			Compound 60			Compound 76			Compound 92			Co	Compound 108				
E	Sta	ndar	d D	Compound 13		Compound 29			Compound 45			Compound 61			Compound 77			Compound 93			Compound 109				
F	Sta	ndar	d E	Compound 14		Compound 30		Compound 46			Compound 62			Compound 78			Compound 94			Compound 110					
G	Sta	ndar	d F	Compound 15		Compound 31		Compound 47			Compound 63			Compound 79		Compound 95		Compound 111							
Н	Sta	ndar	d G	Compound 16		Compound 32			Compound 48			Compound 64			Compound 80			Compound 96			Compound 112				
-1	Con	npour	nd 1	Compound 17		Compound 33		Compound 49			Compound 65			Compound 81			Compound 97		Compound 113						
J	Con	npour	nd 2	Compound 18		Compound 34		Compound 50			Compound 66			Compound 82			Compound 98			Compound 114					
K	Con	npour	nd 3	Com	npou	nd 19	Со	mpour	nd 35	Compound 51		d 51	Compound 67		Compound 83		Compound 99		d 99	Compound 115			1115		
L	Con	npour	nd 4	Com	npou	nd 20	Со	mpour	nd 36	Con	npoun	d 52	Com	poun	nd 68	Con	npoun	d 84	Com	pound	100	Co	mpo	und	1116
M	Con	npour	nd 5	Com	npou	nd 21	Со	mpour	nd 37	Con	npoun	d 53	Com	poun	nd 69	Con	npoun	d 85	Com	pound	101	Co	mpo	und	1117
N	Con	npour	nd 6	Com	npou	nd 22	Со	mpour	nd 38	Con	npoun	d 54	Com	poun	nd 70	Con	npoun	d 86	Com	pound	102	Co	mpo	und	1118
0	Con	npour	nd 7	Com	npou	nd 23	Со	mpour	nd 39	Con	npoun	d 55	Com	poun	nd 71	Con	npoun	d 87	Com	pound	103	Co	mpo	und	1119
Р	Con	npour	nd 8	Com	npou	nd 24	Со	mpour	d 40	Con	npoun	d 56	Com	poun	nd 72	Con	npoun	d 88	Com	pound	104	Co	mpo	und	120

Technical Data Sheet, Rev 9b, 08-06-25 - For research use only. Not intended for diagnostic or therapeutic use. Page 4

Ph: 866-588-0455 Fax: 801-588-0497 **echelon-inc.com**