PI3-Kinase Activity ELISA: Pico
96-well ELISA Assay for Detection of PI(3,4,5)P₃
(Patent Protected)

Product Number: K-1000s

Materials Provided

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-1001s</td>
<td>PI(3,4,5)P₃ Coated Strip-well Detection Plate</td>
<td>1 plate</td>
</tr>
<tr>
<td>K-1008</td>
<td>PI(4,5)P₂ Substrate, diC₈</td>
<td>1 vial of 23 nmol</td>
</tr>
<tr>
<td>K-1003s</td>
<td>PI(3,4,5)P₃ Standard, diC₈</td>
<td>1 vial of 0.9 nmol</td>
</tr>
<tr>
<td>K-1006</td>
<td>PI(3,4,5)P₃ Detector</td>
<td>1 vial of 20 µL</td>
</tr>
<tr>
<td>K-1005s</td>
<td>Detection Buffer</td>
<td>1 bottle of 10 mL</td>
</tr>
<tr>
<td>K-SEC1</td>
<td>Secondary Detector</td>
<td>1 vial of 300 µL</td>
</tr>
<tr>
<td>K-TBST</td>
<td>10x TBS-T Buffer</td>
<td>1 bottle of 20 mL</td>
</tr>
<tr>
<td>K-TMB1</td>
<td>TMB Solution</td>
<td>1 bottle of 12 mL</td>
</tr>
<tr>
<td>K-STOPpt</td>
<td>1 N H₂SO₄ Stop Solution</td>
<td>1 bottle of 10 mL</td>
</tr>
<tr>
<td>K-KBZ</td>
<td>5x KBZ Kinase Reaction Buffer</td>
<td>1 bottle of 4 mL</td>
</tr>
<tr>
<td>K-EDTA</td>
<td>100 mM EDTA Solution</td>
<td>1 vial of 500 µL</td>
</tr>
<tr>
<td>Incubation Plate</td>
<td>Colored 96-well polypropylene U-bottom plate</td>
<td>1 plate</td>
</tr>
<tr>
<td>Plate Sealers</td>
<td>Clear acetate sheet, 1 side adhesive</td>
<td>3 seals</td>
</tr>
</tbody>
</table>

Additional Materials Provided by User
- Source of purified PI3-Kinase (human PI3K p110α/p85α for positive control or inhibitor study, cat# E-2000)
- 450 nm absorbance plate reader
- 1 M DTT and 10 mM ATP stock solutions (store at -20°C in aliquots) for the Kinase Reaction Buffer.

Storage
Store kit at 4°C in a dark location. Store prepared reagents as indicated in the protocol.

Background and Product Description

The production of PI(3,4,5)P₃ from PI(4,5)P₂ by PI3-Kinases (PI3-K) is important in multiple cell signaling pathways. Typically, experiments to measure PI3-K activity have involved phosphorylation of a phosphoinositide substrate using §²P, then extraction of radioactive products, and separation using thin-layer chromatography or HPLC. The assay plate method developed by Echelon Biosciences, Inc. allows the user to determine PI3-K activity, using either recombinant or immunoprecipitated enzyme, by means of a standard ELISA format, eliminating the need for radioactivity, and thin layer chromatography or HPLC.

The assay is a competitive ELISA in which the signal is inversely proportional to the amount of PI(3,4,5)P₃ produced. After the PI3-Kinase reactions are complete, reaction products are first mixed and incubated with a PI(3,4,5)P₃ detector protein, then added to the PI(3,4,5)P₃-coated detection plate for competitive binding. A peroxidase-linked secondary detector and colorimetric detection is used to detect PI(3,4,5)P₃ detector binding to the plate. The colorimetric signal is inversely proportional to the amount of PI(3,4,5)P₃ produced by PI3-Kinase. The three major assay steps are outlined in the box below.

1. IP, Purify, or Purchase PI3-K Enzyme → 2. Set Up PI3-K Reactions → 3. Detect PI(3,4,5)P₃ Product in ELISA

Echelon Biosciences products are sold for research and development purposes only and are not for diagnostic use or to be incorporated into products for resale without written permission from Echelon Biosciences. Materials in this publication, as well as applications and methods and use, may be covered by one or more U.S. or foreign patents or patents pending. We welcome inquiries about licensing the use of our trademarks and technologies at busdev@echelon-inc.com.
Basic Assay Protocol

Reagent Preparation

1. Read Assay Notes on page 4 of this TDS before starting the assay. Bring plates (K-1001s, colored plate), lipids (K-1008, K-1003s), buffers (K-1005s, K-KBZ, K-TBST), EDTA solution (K-EDTA), TMB solution (K-TMB1) and Stop Solution (K-STOPt) to room temperature before use. Place detectors (K-1006, K-SEC1) on ice until use.

2. KBZ Reaction Buffer:
Prepare fresh KBZ reaction buffer from 5x KBZ Buffer, DTT and ATP stock solutions for use on the day of assay. Dilute 5x KBZ buffer (K-KBZ) 5-fold in dH$_2$O and supplement with 2 mM DTT and 100 µM ATP (see Assay Note 1). Example for preparing 5 mL KBZ Reaction Buffer is as follows:

5 mL of KBZ Reaction Buffer = 1 mL 5x KBZ Buffer + 10 µL 1M DTT + 50 µL 10 mM ATP + 3,940 µL dH$_2$O

3. PI(4,5)P$_2$ Substrate:
Prepare a 100 µM PI(4,5)P$_2$ substrate stock solution by adding 230 µL dH$_2$O to the vial of diC$_8$ PI(4,5)P$_2$ substrate (K-1008). Vortex the vial shortly to fully reconstitute the lipid. Spin down and place at room temperature until use. Further dilute the required amount of PI(4,5)P$_2$ substrate in KBZ Reaction Buffer for a 10 µM (2x concentration) working solution (see Assay Note 2). Place substrate working solution at room temperature until use. The 100 µM PI(4,5)P$_2$ stock solution will be used again to prepare Standard Curve Buffer in step 5. Store remaining of the 100 µM PI(4,5)P$_2$ Substrate at -20ºC for up to 3 months.

A 500 µL working solution can setup 15 PI3-K reactions (30 assay points).

500 µL of 10 µM PI(4,5)P$_2$ substrate = 50 µL of 100 µM PI(4,5)P$_2$ stock + 450 µL of KBZ Reaction Buffer

4. Kinase Stop Solution:
Prepare a Kinase Stop Solution by supplementing KBZ Reaction Buffer with 4 mM EDTA. 1.5 mL Kinase Stop Solution can stop 15 PI3-K reactions (30 assay points). Place Kinase Stop Solution at room temperature until use.

1.5 mL of Kinase Stop Solution = 1.44 mL of KBZ Reaction Buffer + 60 µL of 100 mM EDTA (K-EDTA)

5. Standard Curve Buffer:
Standard Curve Buffer will be used to dilute the PI(3,4,5)P$_3$ standards. On the day of ELISA assay, prepare the Standard Curve Buffer by supplementing KBZ Reaction Buffer with 2 µM PI(4,5)P$_2$ and 2.4 mM EDTA. 1.4 mL of Standard Curve Buffer will be sufficient for triplicate standards and controls. Place Standard Curve Buffer at room temperature until use.

1.4 mL Standard Curve Buffer = 1.338 µL KBZ Reaction Buffer + 28 µL 100 µM PI(4,5)P$_2$ + 33.6 µL 100 mM EDTA

6. PI(3,4,5)P$_3$ Standard:
Prepare a 3.6 µM PI(3,4,5)P$_3$ standard stock solution by adding 250 µL dH$_2$O to the vial of diC$_8$ PI(3,4,5)P$_3$ standard (K-1003s). Vortex the vial shortly to fully reconstitute the lipid. Spin down and place at room temperature. Unused portion of 3.6 µM PI(3,4,5)P$_3$ standard stock can be stored at -20ºC for up to 3 months.

7. TBS-T Buffer:
Prepare TBS-T buffer by diluting 20 mL of the provided 10x TBS-T buffer (K-TBST) with 180 mL dH$_2$O.

Kinase Reaction

1. Isolate or prepare PI3-Kinase enzyme according to usual protocols. See attached support protocol for immunoprecipitation of Class IA PI3-K enzymes from cells. Prior to use, dilute the needed amount of PI3-Kinase to a 2x concentration in the KBZ Reaction Buffer (see Assay Note 3).

2. PI3-Kinase reactions can be set up in micro centrifuge tubes.
 a. For each 60 µL PI3-K reaction (for duplicate assay points): combine 30 µL of 10 µM PI(4,5)P$_2$ substrate (300 pmol) and 30 µL of PI3-Kinase (2x concentration). You may also include an Enzyme Only control by replacing 30 µL of substrate with 30 µL of KBZ Reaction Buffer.
 b. Seal the kinase reactions and let them proceed for a certain time, usually 2-3 hours at 37°C (see Assay Note 4).
 c. Stop each 60 µL kinase reaction by adding 90 µL of Kinase Stop Solution.
 d. If PI3-K enzymes are bound to beads in kinase reactions, centrifuge to separate the beads before transferring the reaction supernatant to the Incubation Plate (colored plate) to proceed with Incubation and Detection (see Assay Note 5). Option: Transfer reaction supernatant to clean tubes and store at -20ºC for up to 2 weeks. ELISA can be run on another day.
Incubation and Detection (ELISA)

We suggest that standards and controls be run in duplicate or triplicate. The Incubation/Detection Plate layout below shows an example plate layout with triplicate standards and controls.

1. Prepare PI(3,4,5)P₃ standards and controls on day of the ELISA assay.
 a. From the 3.6 µM PI(3,4,5)P₃ stock prepared earlier, prepare a 0.36 µM PI(3,4,5)P₃ standard by adding 30 µL of the 3.6 µM stock solution to 270 µL of the Standard Curve Buffer.
 b. Make four 3-fold serial dilutions from the 0.36 µM PI(3,4,5)P₃ with Standard Curve Buffer, as outlined in the table below.
 | 100 µL of previous dilution + 200 µL Standard Curve Buffer = 300 µL of next dilution.

 c. Pipet 60 µL/well of each standard solution in triplicate or duplicate to rows A through E of the Incubation Plate (colored).
 d. Pipet 60 µL/well of the Standard Curve Buffer to the No Enzyme control wells in row F of the Incubation Plate.
 e. Pipet 60 µL/well of KBZ Reaction Buffer to the No Lipid control and the Blank control wells in row G and H of the Incubation Plate.
 f. Pipet 60 µL/well of Detection Buffer (K-1005s) to the Blank control wells in row H.

2. Transfer 60 µL/well of each stopped kinase reaction into 2 wells of the Incubation Plate for duplicate data points.

3. Incubate with PI(3,4,5)P₃ detector.
 a. Briefly centrifuge (do not vortex) the vial of PI(3,4,5)P₃ detector (K-1006). Dilute the PI(3,4,5)P₃ detector 1:600 in Detection Buffer (K-1005s). Make only enough working solution of detector for the current assay and store the remainder of the PI(3,4,5)P₃ detector at 4°C for future use.
 b. Add 60 µL/well of above diluted PI(3,4,5)P₃ detector to all control, standard, and stopped reaction wells of the Incubation Plate except the blank controls in row H.
 c. Seal the Incubation Plate and incubate for 60 minutes at room temperature with gentle agitation on a plate shaker.

4. After incubation, transfer 100 µL of standards, controls, and reactions from the Incubation Plate to corresponding wells of the Detection Plate (K-1001s). Seal plate and incubate for 60 min at room temperature with gentle agitation on a plate shaker (see Assay Notes 6 and 7).

5. Discard solutions from the detection plate and wash the wells 3 times with 200 µL/well of TBS-T.

6. Briefly centrifuge the vial of secondary detector (K-SEC1). Dilute the secondary detector 1:80 with TBS-T and mix by gently invert the tube 10 times. Dilute ONLY the amount you will use for the current assay and store the remainder of the secondary detector at 4°C for future use. Discard the last TBS-T wash from plate, and add 100 µL of diluted secondary detector to each well of the detection plate. Seal the plate and incubate for another 30 minutes at room temperature on a plate shaker.

7. Discard solutions from the detection plate and wash the wells 3 times with 300 µL/well of TBS-T.

8. Discard the last TBS-T wash from plate completely and immediately add 100 µL of room temperature TMB solution (K-TMB1) to each well. Allow color to develop for 10-30 minutes in dark. Watch for blue color development and DO NOT overdevelop. Stop color development by adding 50 µL of 1 N H₂SO₄ stop solution (K-STOPt) to each well when the color has turned dark ocean blue in No Lipid control wells but is still clear or very faint blue in 18 pmol PI(3,4,5)P₃ standard wells. Blue color will change to yellow color upon addition of stop solution. Eliminate any big air bubbles present in wells before reading the plate.

 Caution: Use caution when dealing with corrosive 1 N H₂SO₄ stop solution.

9. Read absorbance at 450 nm on a plate reader.
Results

PI3-Kinase activity can be estimated by comparing the absorbance values from the wells containing enzyme reaction products to the values in the standard curve. Plot the absorbance values obtained vs. log of PI(3,4,5)P₃ in pmol per standard to generate a standard curve using sigmoidal dose-response (variable slope) correlation. Determine the PI(3,4,5)P₃ level in pmol by interpolation from absorbance values obtained from the enzyme reactions. PI3-K activity in your samples can be estimated by the percentage conversion from initial 100 pmol of PI(4,5)P₂ per assay point. There are 100 pmol of combined lipids – PI(3,4,5)P₃ product plus remaining PI(4,5)P₂ substrate, in each assay point.

Assay Notes:

1. Use of the provided kinase reaction buffer has proven to improve PI3-Kinase activities. Optimization of DTT and ATP concentrations in the kinase reaction buffer may be desired. In our test, 2 mM DTT concentration in KBZ reaction buffer is optimal for p110alpha/p85a activity. As high as 150 µM ATP concentration in KBZ reaction buffer can be used to increase PI3-Kinase activity. For PI3-Kinase inhibitor study, lower ATP concentration to 25 µM or 50 µM may be desired.

2. Equilibrating PI(4,5)P₂ substrate (K-1008) to room temperature before reconstitution is confirmed to improve PI3-K activity significantly. Optimization of the kinase reactions by PI(4,5)P₂ substrate titration may be desired. Increasing PI(4,5)P₂ substrate concentration will increase the PI3-Kinase activity but will also increase substrate competition with the PI(3,4,5)P₃ detector. If a different PI(4,5)P₂ substrate concentration is used, please adjust the PI(4,5)P₂ concentration in the standard curve buffer accordingly. It is critical to keep PI(4,5)P₂ concentrations in standard curve buffer the same as in the stopped PI3-K reactions.

3. The amount of enzyme to use per PI3-K reaction will vary according to your individual experiment and the cell type you are using. Whether you are using purified PI3-Kinase or enzyme immunoprecipitated from cell lysate, it’s recommended to run an enzyme/cells titration first to determine the optimum enzyme/cells amount to use for future assays. When using purified recombinant human PI3-K alpha from Echelon (Cat# E-2000), enzyme concentration of 0.05-0.25 µg/mL in reaction is suggested as a starting point. In testing, we found that enzyme immunoprecipitated from cell lysate containing 0.5 - 1 mg cellular protein (approximately 5 million cells), is usually sufficient for each PI3-K reaction (duplicate assay points).

4. Vigorous shaking will impair PI3-Kinase enzyme activity. If mixing is preferred during kinase reaction, gently flick the reaction tubes a few times every 30 minutes. If reactions are set up in a 96-well plate, it’s not required to shake the reaction plate. However, shaking the reaction plate at or below 300 rpm on a plate shaker at 37°C slightly improves enzyme activity.

5. Beads need to be removed from kinase reactions before reactions are stored or detected. Do not freeze the beads at any time.

6. The detection plate is composed of 12 of 8-well strips. Unused strip wells should be removed from the plate frame and stored in a clean sealable plastic bag at 4°C. Save the plate frame after assay for future use of the remaining strip wells.

7. Never let the detection plate dry out after the ELISA assay has started. Always prepare the next solution needed before discarding the current one from wells in use.

8. If tissue samples are used, flash freeze tissue in liquid nitrogen and ground to powder on dry ice before proceeding with the IP protocol below.
Support Protocol - Immunoprecipitation of Class IA PI3-Kinase from cells

1. Grow cells to 80% confluence in 10 cm dishes.
2. Induce quiescence by incubating overnight in serum-free medium containing 0.5% insulin-free BSA.
3. Stimulate cells with 100 nM insulin in serum-free medium for 10 minutes at 37°C. Optional: stimulate cells with 20 – 40 ng/mL PDGF in serum-free medium for 3-5 min at room temperature.
4. Remove solution and place cells on ice. Add 10 mL per dish of ice-cold Buffer A (20 mM Tris-HCl, pH 7.4, 137 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, and 1 mM sodium orthovanadate). Rinse three times with this solution.
5. Remove Buffer A and add 1 mL of ice cold Lysis Buffer (Buffer A plus 1% NP-40 and 1 mM PMSF). Keep plates on ice for 20 minutes.
6. Scrape cells from dish, transfer to 1.5 mL microcentrifuge tubes. Centrifuge for 10 minutes to sediment insoluble material.
7. Transfer supernatant to new tubes, add 5 µL of anti-PI3-Kinase antibody (Millipore, catalog # 06-195) to each tube. Incubate for one hour at 4°C with gentle rotation.
8. Add 60 µL of 50% slurry of Protein A-agarose beads in PBS to each tube. Incubate with gentle rotation at 4°C for one to two hours (incubate over night if desired).
9. Collect immunoprecipitated enzyme by centrifuging 5 seconds, and wash with freshly prepared buffers as follows:
 - Three times with Buffer A plus 1% NP-40
 - Three times with 0.1 M Tris-HCl, pH 7.4; 5 mM LiCl, and 1 mM sodium orthovanadate.
 - Twice with TNE (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA) containing 1 mM sodium orthovanadate.
10. Aspirate last wash completely, add 30 µL of KBZ Reaction Buffer to cover the beads. Proceed immediately to PI3-K reactions by adding 30 µL of 10 µM PI(4,5)P2 substrate as described in the Basic Assay Protocol.

Related Products

- **Enzymes:** Human p110α/p85α (cat# E-2000); Human p110α (E545K)/p85α (cat# P27-15H); Mouse p110α/p85α (cat# P27-18H); Human p110β/p85α (cat# P28-10H); PTEN Enzyme (cat# E-3000); SHIP2 Enzyme (cat# E-1000)
- **Substrates:** PI(4,5)P2 (cat# P-4504, P-4508, P-4516);
 - Labeled-PI(4,5)P2 (C-45B6, C-45B6a, C-45F6, C-45F6a, C-45M6);
- **Reaction Buffers:** PI3-K Reaction Buffer (cat# K-KBZ); SHIP2 Reaction Buffer (cat# K-S2RB)
- **Inhibitors:** Resveratrol (cat# B-0021); Trismethoxyresveratrol (cat# B-0022); Wortmannin (cat# B-0222); LY294002 (cat# B-0294); AS605240 (cat# B-0301); AS604850 (cat# B-0302); PI-103 (cat# B-0303); PI3-Kα Inhibitor 2 (cat# B-0304); IC87114 (cat# B-0305); PK-93 (cat# B-0306); ZSTK474 (cat# B-0307); 3-a-aminocholestane (3AC, SHIP1 Inhibitor, cat# B-0341); SF1670 (PTEN Inhibitor, cat# B-0350); VO-OHpic (PTEN Inhibitor, cat# B-0351).
- **Activity Assays:** Luminescent Assay for PI3-Kinase Activity (AlphaScreen™, cat# K-1300); PI3-K FP Assay (cat# K-1100);
 - Class III PI3-K ELISA (cat# K-3000);
 - PI(5)P 4-Kinase (PIP4KII) Activity ELISA (cat# K-5400);
 - PI(4)P 5-Kinase (PIP5KI) Activity Assay (cat# K-5700);
 - PTEN Activity ELISA (cat# K-4700); SHIP2 FP Assay (cat# K-1400).
- **PIP Mass ELISA Assays:**
 - PIP1 Mass ELISA (cat# K-2500s);
 - PIP3 Mass ELISA (cat# K-4505);
 - PIP(3)P Mass ELISA (cat# K-3300);
 - PIP(3,4)P2 Mass ELISA (cat# K-3800);
 - PIP(4)P2 Mass ELISA (cat# K-4000).

Echelon Biosciences products are sold for research and development purposes only and are not for diagnostic use or to be incorporated into products for resale without written permission from Echelon Biosciences. Materials in this publication, as well as applications and methods and use, may be covered by one or more U.S. or foreign patents or patents pending. We welcome inquiries about licensing the use of our trademarks and technologies at busdev@echelon-inc.com.
Citations

(1) V. Wells and L. Mallucci: Phosphoinositide 3-kinase targeting by the β galactoside binding protein cytokine negates akt gene expression and leads aggressive breast cancer cells to apoptotic death, Breast Cancer Research 2009, 11:R2

(2) C.M. Cao, Y. Zhang, N. Weisleder, C. Ferrante, X. Wang, F. Lv, Y. Zhang, R. Song, M. Hwang, L. Jin, J. Guo, W. Peng, G. Li, M. Nish, H. Takeshima, J. Ma and R.P. Xiao: MG53 Constitutes a Primary Determinant of Cardiac Ischemic Preconditioning, Circulation 2010;121, 2565-2574

(6) Yi Lin and Zhongjie Sun: Thyroid hormone potentiates insulin signaling and attenuates hyperglycemia and insulin resistance in a mouse model of type 2 diabetes, British Journal of Pharmacology 2010; 162 597–610

(7) Hung-Yun Lin, I-Chen Yu et al.: Increased Hepatic Steatosis and Insulin Resistance in Mice Lacking Hepatic Androgen Receptor, HEPATOLOGY, 2008; Vol. 47, No. 6, 1924-35

(8) Hong-Gang Yu, et al.: Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death, Int. J. Cancer 2008; 122, 433–443

(12) Qiu-Xia Zhang, et al.: Glomerular endothelial PI3 kinase-couples to VEGFR2, but is not required for eNOS activation, Am J Physiol Renal Physiol 2011; 301: F1242–F1250

Notice to Purchaser

This kit and all non-radioactive, competitive assays for determining phosphoinositide-3-kinase (PI3-K) activity are protected by Echelon Biosciences Inc. U.S. Patent 7,067,269. The purchase of this product includes a limited, non-transferable immunity from suit under the foregoing patent claims for using only this amount of product for the purchaser's own internal research. For inquiries, email busdev@echelon-inc.com

Echelon Biosciences products are sold for research and development purposes only and are not for diagnostic use or to be incorporated into products for resale without written permission from Echelon Biosciences. Materials in this publication, as well as applications and methods and use, may be covered by one or more U.S. or foreign patents or patents pending. We welcome inquiries about licensing the use of our trademarks and technologies at busdev@echelon-inc.com.